First Total Synthesis of an Analogue of (\pm)-Hypargenin B

An Pai LI, Hui WANG, Cheng Lu ZHANG, Tong Xing WU, Xin Fu PAN*
Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract

First total synthesis of (\pm)-hypargenin B methyl ether 2 was accomplished via a strategy of $\mathrm{AC} \rightarrow \mathrm{ABC}$, in which $\mathrm{CrO}_{3} / \mathrm{H}_{2} \mathrm{O} / \mathrm{NaOAc} / \mathrm{HOAc}$ system was utilized for introducing 7-keto group in order to avoid dehydration of benzyl tertiary alcohol.

Keyword: Hypargenin B, diterpene, intramolecular, steroselective.

Hypargenin B, a diterpene with the abietane skeleton, was isolated by Ayhan from the root of an endemic species salvia hypargenia and showed antibacterial activity ${ }^{1}$. In this diterpene, the junction of A / B ring is trans. In order to provide for studying further the relationship between the structure and bioactivities, we develop a novel route whereby the hypargenin B methyl ether $\mathbf{2}^{2}$ could be obtained in good yield. To our knowledge no total synthetic work has been reported on the title compound yet.

As shown in Scheme 1, our synthetic strategy is $\mathrm{AC} \rightarrow \mathrm{ABC}$, we utilized α-cyclocitral as the A ring starting material and $\mathbf{8}$ was prepared according to reference ${ }^{3}$. Lithium reagent of $\mathbf{9}$ was obtained from p-bromoanisole as the C ring synthon.

Scheme 1

Reagents and conditions: (i) THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}(70 \%)$; (ii) $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 12 \mathrm{~h}(95 \%)$; (iii) 5% $\mathrm{Pd} / \mathrm{C}, \mathrm{HCl}, \mathrm{THF}$, r. t., $8 \mathrm{~h}(95 \%)$; (iv) $\mathrm{CH}_{3} \mathrm{COCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-5^{\circ} \mathrm{C}, 5 \mathrm{~h}(90 \%)$; (v) $\mathrm{CH}_{3} \mathrm{Li}, \mathrm{Et}_{2} \mathrm{O}$, r. t., $6 \mathrm{~h}(95 \%)$; (vi) $\mathrm{CrO}_{3} / \mathrm{H}_{2} \mathrm{O} / \mathrm{NaOAc} / \mathrm{HOAc}$, r. t., $1 \mathrm{~h}(90 \%)$.

[^0]Condensation of compound $\mathbf{8}$ with 9 at $0^{\circ} \mathrm{C}$ afforded the desired acetophenone derivative 7 in 70% yield. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was used in the intramolecular cyclization step (B ring) at room temperature. The product $\mathbf{6}$ was afforded only in trans form in 95% yield. According to the literature ${ }^{4}$, when the A / B ring is in cis junction, the $\mathrm{C}_{4}-\alpha$-methyl group remains within the sphere of magnetic influence of aromatic ring C , the δ value of $\mathrm{C}_{4}-\alpha$-methyl group will appear at about 0.4 ppm . If the A / B ring is in trans junction, the $\mathrm{C}_{4}-\alpha$-methyl group is slightly deshielded by the aromatic ring C , the δ value of $\mathrm{C}_{4}-\alpha$-methyl group will appear at about 1.0 ppm . From the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{6}$, we did not find any signal at 0.4 ppm and GC-MS also showed only one isomer. Hydrogenation of compound 6 over $5 \% \mathrm{Pd} / \mathrm{C}$ in THF and a drop of HCl afforded compound 5. Compound 5 was acetylated by acetyl chloride and anhydrous AlCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-5^{\circ} \mathrm{C}$ to afford compound $\mathbf{4}$ in 90% yield. Compound $\mathbf{4}$ was then reacted with $\mathrm{CH}_{3} \mathrm{Li}$ to give the alcohol $\mathbf{3}$ in high yield. In order to obtain 7 keto compound $\mathbf{2}$, according to reference ${ }^{5}$, we tried $\mathrm{PCC} /$ Cetile and $\mathrm{HOAc} / \mathrm{CrO}_{3}$ system, but the yield of target product was low owing to the dehydration of C-15 benzyl tertiary alcohol. Considering the higher acidity in this system to lead to the dehydration, we substituted PDC for PCC, but the reaction with $\mathbf{3}$ could not proceed. Then we utilized a system of $\mathrm{CrO}_{3} / \mathrm{H}_{2} \mathrm{O} / \mathrm{NaOAc} / \mathrm{HOAc}(12 \mathrm{mmol}: 2 \mathrm{~mL}: 1 \mathrm{~g}: 6 \mathrm{~mL}$). Compound $3(10 \mathrm{mmol})$ in HOAc (1 mL) was added into above solution, after stirring at room temperature for 1 h , compound 2 was obtained in 90% yield, almost no dehydration product was found, the result owes mainly to that the buffer $(\mathrm{NaOAc} / \mathrm{HOAc}, \mathrm{pH}=5.1)$ solution which decreased the acidity of the system.

Acknowledgments

We are grateful to the National Natural Science Foundation of China (No. 29372050) for financial support.

References and Notes

[^1]Received 4 June, 2001

[^0]: * E-mail: panxf@lzu.edu.cn

[^1]: U. Ayhan, J. Nat. Prod., 1988, 51, 1187.
 2. Compound 2: White needle crystals, mp $169-170^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{d}_{6}\right.$-acetone, $400 \mathrm{MHz}, \delta$ $\mathrm{ppm}): 0.92$ and $0.99(\mathrm{~s}$, each 3 H$), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.50$ and $1.51(\mathrm{~s}$, each 3 H$), 1.29-2.56(\mathrm{~m}, 9 \mathrm{H})$, $3.97(\mathrm{~s}, 3 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{d}_{6}\right.$-acetone, $\left.100 \mathrm{MHz}, \delta \mathrm{ppm}\right): 19.58$, $21.68,23.37,29.85,32.96,33.69,36.50,38.54,39.13,42.10,50.59,56.03,71.79,106.89$, 124.60 , 126.41, 136.33, 158.12, 162.08, 197.93. FAB-MS: 331(M+1). anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}$: requires C, 76.32; H, 9.16. Found: C, 76.38; H, 9.08. IR ($\mathrm{KBr} / \mathrm{cm}^{-1}$) : 3599 , 3479, 2950, 2855, 1668, 1598, 1557, 1484.
 3. F. M. Alfonso, M. L. B. Ana, J. Org. Chem. 1995, 60, 3580.
 4. W. Ernest, A. Adriano, B. Peter, W. J. Richard, J. Org. Chem. 1965, 30, 713.
 5. S. Ghosh, B. K. Banik, U. R. Ghatak, J Chem. Soc., Perkin Trans. 1, 1991, 3195.

